Surjectif — Surjection Diagramme sagittal d une surjection Une surjection est une application surjective. Une application est surjective si et seulement si tout élément de son ensemble d arrivée a au moins un antécédent, c est à dire est image d au moins un… … Wikipédia en Français
surjective — ● surjectif, surjective adjectif Application surjective d un ensemble A sur un ensemble B, application f de domaine A tel que tout élément y de B est l image par f d au moins un élément x de A. ● surjectif, surjective (expressions) adjectif… … Encyclopédie Universelle
surjection — surjectif, ive [ syrʒɛktif, iv ] adj. • mil. XXe; d apr. injectif, bijectif ♦ Math. Application surjective (ou SURJECTION n. f. ),telle que tout élément de l ensemble d arrivée soit l image d au moins un élément de l ensemble de départ. ●… … Encyclopédie Universelle
Algebre universelle — Algèbre universelle L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de… … Wikipédia en Français
Algèbre Universelle — L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière… … Wikipédia en Français
Algèbre universelle — Pour les articles homonymes, voir Algèbre (homonymie). L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces … Wikipédia en Français
Théorème de factorisation (de morphismes) — En mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d un espace quotient X / R dans un autre espace Y à partir d un morphisme de X vers Y. Sommaire 1 Le cas des ensembles 2 … Wikipédia en Français
Groupe classique — En mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés… … Wikipédia en Français
GROUPES (mathématiques) - Groupes finis — Née de l’étude des groupes de permutations des racines d’équations, la théorie des groupes finis s’est développée indépendamment depuis le Traité des substitutions et des équations algébriques (1870) de Camille Jordan. Après les travaux… … Encyclopédie Universelle
GÉOMÉTRIE ALGÉBRIQUE — Sous sa forme actuelle, la géométrie algébrique est une branche de l’algèbre relativement récente (cf. ALGÈBRE, DEDEKIND). Pour «comprendre» les phénomènes d’intersection des courbes et des surfaces, il s’est révélé nécessaire d’élaborer des… … Encyclopédie Universelle